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Abstract
We propose a molecular theory of colloid–wall interactions in nematic media that predicts a
new effective force acting on colloidal particles in the presence of an external field. In contrast
to the so-called ‘image’ interaction that is always repulsive at long distances, the force identified
here can be attractive or repulsive, depending on the type of anchoring at the wall and colloidal
surfaces. The effective force on a colloidal particle decreases with distance s from the wall as
exp(−s/ξ), where ξ is a magnetic (electric) coherence length. At weak fields the force is
proportional to (�/ξ)3 for ‘quadrupolar’ colloids and to (�/ξ)2 for ‘dipoles’, where � is the
colloidal diameter. A brief discussion of recent experiments in the light of our findings is
presented.

Nematic colloids are an important class of materials that are
of current interest both for the fundamental questions they
pose and because of potential applications [1–3]. A good deal
of effort has focused on understanding colloidal interactions
and ordering in bulk systems [4–10]. The interactions in
bulk systems are now reasonably well understood from both
phenomenological [4–6] and molecular [8, 9] viewpoints. A
discussion and comparison of both approaches is given in [9].

In the presence of surfaces and applied fields nematic
colloids display an amazing variety of phenomena that remain
to be understood [3, 11–14]. Obtaining an understanding of the
effective forces acting on colloidal particles is a key aspect of
the problem. In phenomenological approaches, wall–colloid
interactions are described in terms of ‘image’ interactions,
analogous to those that occur in electrostatics [15]. At long
distances, this description leads to a repulsive force between
a colloidal ‘multipole’ and its mirror image in the surface
plane, closely akin to the repulsive interaction between an
electrostatic multipole and an inert (nonpolarizable) wall. In
the present paper, we consider wall–colloid interactions at the
molecular level, applying the statistical mechanical approach
used in our earlier work [8, 9, 16–20]. We identify a
different, field-dependent, wall–colloid interaction which can
be attractive or repulsive depending on the particular type of
anchoring at the wall and colloidal surfaces. At sufficient range
this force will dominate image interactions. We briefly discuss
recent experiments [12] in the light of our findings.

We consider a spherical colloidal particle C of diameter
� in the presence of a wall W as shown in figure 1. The

W

R

N

C

V

Figure 1. The geometry of the system.

center of the colloidal particle is chosen as the origin of our
coordinate system, and an external field V defines the z axis.
Sufficiently far from the wall, the bulk director n̂ (the ‘hat’
denotes a unit vector) is parallel to the field. The vector s

connects the center of the colloidal particle with the nearest
point of the wall surface, and s′ does the same for a molecule
of the nematic N. Note that the wall can take any orientation
with respect to the field.
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We employ the hypernetted-chain closure familiar in the
integral equation theory of liquids [21] in order to obtain the
wall–colloid potential of mean force (the effective interaction),
φWC(s). For the present system the required relationship is

− βφWC(s) + βvWC(s) = hWC(s) − cWC(s)

=
∫

hWN(s′, ω̂)ρN(ω̂)cCN(R, ω̂) dR dω̂, (1)

where hi j and ci j are the total and direct correlation functions
of components i and j , ω̂ denotes the orientation of the
nematogen, ρN(ω̂) = ρN fN(ω̂), ρN is the nematic number
density, fN(ω̂) is the orientational distribution of the bulk
nematic, β = 1/kBT , and kB is the Boltzmann constant. The
term βvWC(s) represents any direct wall–colloid interaction.
This term is not mediated by the nematic and will in general be
short-ranged. In the present analysis we are interested in the
longer-ranged, nematic-mediated contribution represented by
the right-hand side of equation (1), and βvWC(s) is set to zero.
This is not a limitation of the theory, since if for a particular
system βvWC(s) is known and is significant, it can be simply
added to our result.

The spirit of our approach [16–20] is to select a molecular
model that is analytically tractable, but sufficiently detailed as
to trap the basic physics of nematic colloids. The nematogens
are modeled as hard particles of diameter σ interacting via an
anisotropic soft potential, characterized by energy and length
parameters, AN and zN respectively [16–20]. The nematogens
interact with an external field according to

v(1) = −V
√

5P2(ω̂1 · n̂), (2)

where P2 is the second order Legendre polynomial.
The colloid–nematogen interaction is modeled as

vCN(R, ω̂) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞,

R < (� + σ)/2

−AC exp[−zC(R − (� + σ)/2)]P2(ω̂ · R̂),

R > (� + σ)/2.

(3)
where R joins the centers of C and N as in figure 1. Note
that positive and negative values of AC favor perpendicular and
parallel orientations of a nematogen with respect to the surface.
For zCσ = 1 the colloid–nematogen interaction is of the order
of molecular dimensions. The magnitude of AC depends on the
surfactant concentration on the colloidal surface. Analogously,
the wall–nematogen interaction is

vWN(s′, ω̂) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞,

s ′ < σ/2

−AW exp[−zW(s′ − σ/2)]P2(ŝ
′ · ω̂),

s′ > σ/2,

(4)

where s ′ = s′ · ŝ. The vectors are defined in figure 1; note that
s′ is negative inside the wall.

In order to extract the behavior of the potential of
mean force from equation (1) the total correlation function
hWN(s, ω̂) is required. This was obtained for arbitrary
wall orientations in earlier work [16–18]. Expressed as

an expansion in spherical harmonics, hWN(s, ω̂) has the
form [16, 17]

hWN(s′, ω̂) =
∑

l,l′=0,2

hWN
ll′m(s′)Ylm(ŝ′)Y ∗

l′m(ω̂). (5)

The derivation given in [16–18] holds when all correlation
lengths are finite, a condition that is met in the presence of an
external field. Note that due to the hard core associated with the
wall–nematogen interaction, hWN(s, ω̂) = −1 for s < σ/2.

The asymptotic behavior of equation (5) at large distances
from the wall is given by [20]

hWN(s′, ω̂)
s ′→∞−→ hWN

221 (s′ = σ/2)

BzW
[Y21(ŝ

′)Y ∗
21(ω̂) + c.c.]

× exp[−(s ′ − σ/2)/ξ ], (6)

where

ξ =
√

K

VρNS23
√

5
(7)

is the magnetic (electric) correlation length, K is the
elastic constant, S2 is the bulk order parameter, B2 =
〈|Y2m(ω̂)|2〉ωβK/(15ρNS2

2 ), and c.c. denotes the complex
conjugate of the preceding term. The notation 〈· · ·〉ω indicates∫

fN(ω̂)(· · ·) dω̂. For spherical harmonics normalized such
that Y00(ŝ) = 1, S2 = 〈Y20(ω̂)〉ω/

√
5. The harmonic

responsible for the long-range behavior is hWN
221 (s′), and

hWN
221 (s′ = σ/2) is its value at wall–nematogen contact. An

explicit expression for the contact value is given in [16, 18].
The other ingredient necessary to obtain the asymptote of
φWC(s, ω̂) is the nematic–colloid direct correlation function,
which in the mean spherical approximation (MSA) can be
expressed as the expansion

cCN(R, ω̂) =
∑

l,l′=0,2

cCN
ll′m(R)Ylm(R̂)Y ∗

l′m(ω̂). (8)

The uniaxial symmetry of the bulk nematic ensures that
〈Ylm(ω̂)Y ∗

l′m′(ω̂)〉ω = 0 unless m = m ′. If we rewrite
equation (1) taking account only of the long-range properties
of hWN, for s ′ 	 σ we obtain

− βφWC(s) = hWN
221 (s = σ/2)

BzW
exp[σ/(2ξ)]ρN〈|Y21|2〉ω

×
∫

exp[−(s + R) · ŝ/ξ ][Y21(ŝ)Y ∗
21(R̂) + c.c.]

× θ [s − σ/2 + Rŝ]cCN
221(R) dR

−
∫

cCN(R, ω̂)θ [−s + σ/2 − R · ŝ]ρN fN(ω̂) dω̂ dR̂,

(9)

where we have used Y ∗
lm(ω̂) = Yl−m(ω̂) and Y00(ω̂) = 1.

The step functions, θ [x], in equation (9) reflect the hard
core conditions. Because in the MSA cCN decreases at long
distances as −βvCN (exponentially on the length scale of
molecular dimensions in our model) the second integral in
equation (9) can be neglected for large s.

Any periodic function can be expanded in Legendre
polynomials, therefore we can write

exp[−(s + R) · ŝ/ξ ]θ [s − σ/2 + R · ŝ]
= exp(−s/ξ)

∑
l

al Pl(R̂ · ŝ), (10)
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where

al = 2l + 1

2

∫ 1

−1
exp(−Rx/ξ)θ

(
s − σ

2
+ Rx

)
Pl(x) dx .

Noting that

Pl(R̂ · ŝ) = 1

2l + 1

l∑
m=−l

Ylm(R̂)Y ∗
lm(ŝ),

one obtains

−βφWC(s) = 2 exp[−(s − σ/2)/ξ ]ρN〈|Y21|2〉ωY21(ŝ)Y ∗
21(ŝ)

× hWN
221 (s = σ/2)

BzW

∫ ∞

0
ã2cNC

221(R)R2 dR, (11)

where ãl = 4πal/(2l + 1). Since

ã2 = 2π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1

−1
exp(−Rx/ξ)P2(x) dx,

R < s − σ/2∫ 1

−(s−σ/2)/R
exp(−Rx/ξ)P2(x) dx,

R > s − σ/2,

(12)

the integral in equation (11) can be rewritten as∫ ∞

0
ã2cCN

221(R)R2 dR = 2π

∫ ∞

0
R2 dR cCN

221(R)

×
∫ 1

−1
exp(−Rx/ξ)P2(x) dx − 2π

∫ ∞

s−σ/2
R2 dR cCN

221(R)

×
∫ −(s−σ/2)/R

−1
exp(−Rx/ξ)P2(x) dx . (13)

We are interested in the effective potential when the wall–
colloid separation is large compared to molecular dimensions,
s − (σ + �)/2 	 σ . For such distances the last integral in
equation (13) is negligibly small because the nematic–colloid
direct correlation function is short-ranged, and decreases as the
potential (equation (3)). Using the integral representation of
the Bessel function

jl(k R) = 1

2il

∫ 1

−1
exp(ik Rx)Pl(x) dx, (14)

the first integral in equation (13) can be expressed in terms of
the Hankel transform

c̃CN
2l1 (k) = 4π il

∫ ∞

0
dRR2 jl(k R)cCN

2l1 (R). (15)

Thus, we obtain

−βφWC(s) = 2ρN〈|Y21|2〉ωY21(ŝ)Y ∗
21(ŝ) exp[−(s − σ/2)/ξ ]

× hWN
221 (s = σ/2)

BzW
c̃CN

221(k = i/ξ). (16)

Equation (16) is valid for colloidal particles of any size.
In earlier work [19, 20] we suggested that for sufficiently
large colloidal particles (i.e. � 	 z−1

C , z−1
N , σ ) cCN(R, ω̂) can

be well approximated by the wall–nematic direct correlation
function for which we have an analytic form [18]. For a

spherical colloidal particle with a uniform surface, the nematic
distribution around the colloid (i.e. the colloid’s ‘nematic coat’)
possesses uniaxial up–down symmetry with respect to the
director [19]. This is the so-called ‘quadrupole’ configuration
frequently observed in experiments.

Hence, for large colloids we employ the explicit
expression for cCN

221(R) ≈ cWN
221 (s = R − �/2) (see

equation (20) of [18]). Then, noting that j2(x) = x2

15 (1 − x2

14 +
x4

504 − · · ·), for weak fields c̃CN
221(k) can be expanded at large �

and small k to obtain

c̃CN
221(k = i/ξ)

ξ>�−→ 4π
hWN

221 (s = σ/2)

30zC
B[�4/(8ξ) + �3

+ O(�2)]ξ−2. (17)

This yields

− βφWC(s) = π

2
ρN〈|Y21|2〉ω hWN

221 (s = σ/2)hCN
221(s = σ/2)

zWzC

× exp[−(s − σ/2)/ξ ] sin2(2θs)

× ξ−2[�4/(8ξ) + �3 + O(�2)], (18)

where hCN
221(s = σ/2) is a contact value analogous to

hWN
221 (s = σ/2), but with colloidal parameters AC and zC.

Explicit expressions for the contact values of hCN and hWN

are given in [16, 18]. The important observation for our
analysis is simply that they are proportional to β AC and β AW,
respectively. This means that the force acting in the direction
normal to the wall on a colloidal particle with quadrupolar
symmetry is attractive when AC and AW have the same sign.
That is, colloidal particles with perpendicular anchoring are
attracted to tilted walls with similar surface conditions, but
repelled from walls with planar anchoring. This is illustrated
pictorially for a particular geometry in figure 2 (panel (a)). The
magnitude of the force can be written as

FWC(s) = 3η
〈|Y21|2〉ωkBT

σ

hWN
221 (s = σ/2)hCN

221(s = σ/2)

(zWσ)(zCσ)

× exp

(
σ

2ξ

)
sin2(2θs)

[
�4

8ξ 4
+ �3

ξ 3
+ O(�2)

ξ 3

]

× exp(−s/ξ), (19)

where η = πρNσ 3/6. We note that the force vanishes if the
tilted wall is parallel or perpendicular to the field, and that the
angle of maximum force is 45◦. Analysis indicates that the
maximum force acting on a colloidal particle at distance s =
15� is induced by a field with magnetic (electric) coherence
length ξ ≈ 5�, whereas at shorter distances (s = 5�) the
optimal effect requires stronger fields (ξ ≈ 1.6�).

It is important to ask if these forces are strong enough
to have significant physical effects that might be observed
experimentally. To address this question, we calculate the force
for the model parameters zCσ = zWσ = zNσ/2 = 0.5, β AN =
1, β AC = β AW = 4. These correspond to interactions that
decay on length scales of the order of nematogen dimensions,
nematogen–nematogen interactions of order kBT , and surface–
nematogen interactions of order 4kBT . We would expect these
values to roughly describe a ‘typical’ system with moderate
surface anchoring. For these parameters β ANη〈|Y21|2〉ω =
0.312 [18] and hWN

221 (s = σ/2) = hCN
221(s = σ/2) ≈ 2 [16].

3
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Figure 2. A pictorial illustration of the influence of an electric field �E on colloidal particles immersed in a slab of nematic fluid. n̂ indicates
the direction of the bulk director, and the walls are ‘treated’ to ensure planar anchoring at zero field. Panel (a) illustrates the situation for
quadrupolar colloids with planar (blue, light) and perpendicular (red, dark) surface anchoring. The dashed lines indicate the nematic ordering
about the colloidal particles. Note that the blue particles are attracted to the surfaces and the red ones are repelled. Panel (b) illustrates the
dipolar colloid case with broken up–down symmetry. Both ‘positive’ (green, dark) ( ĀC = D > 0) and ‘negative’ (lilac, light) ( ĀC = −D) are
shown. Note that for the geometry used in this sketch the positive and negative dipoles are attracted to different surfaces.

(This figure is in colour only in the electronic version)

Then at 300 K and distance s = 10�, the estimated force is
∼0.1 pN at the optimal coherence length ξ ≈ 3.3�. In this
calculation we have taken the nematogen ‘size’ to be of the
order of 1 nm. For comparison, we have estimated the so-called
image force [15] between a spherical colloid and its mirror
image reflected in a surface identical to that of the colloid
(the colloid–image distance is 20�). For this configuration
the image force at zero field (estimated using the quadrupole–
quadrupole interaction given in [9]) is 3–4 orders of magnitude
weaker than the force described above.

Thus, the force we identify here is of sufficient range
and magnitude to be of physical significance, and should
be observable in experiments. We believe that the origin
of this force is the nonuniform nematic distribution created
by tilted walls. As noted above, in our model the long-
range force vanishes for wall orientations that are parallel and
perpendicular to the field, and some discussion of why this
might be so is required. Suppose, for example, that the wall
supports perpendicular anchoring (AW > 0), then one would
not expect a significant force for a perpendicular field, because
if the wall and field act in the same direction no long-range
distortions are induced in the nematic. The parallel field case
is surprising at first sight because for this orientation the wall
and field oppose each other, and distortions are induced in the
nematic. However, in earlier work [16] we have shown that for
this configuration the distortions tend to be localized near the
surface and do not extend far into the nematic. In other words,
except near the wall the field dominates. This perhaps explains
why the asymptotic force we identify above vanishes for this
configuration.

For tilted walls the situation is different. As discussed
in [17], tilting the wall breaks the symmetry of the system,
and long-range distortions are induced in the nematic. At
zero field, the tilted wall reorients the bulk director to create
a new uniform nematic distribution. Likewise the nematic
coat surrounding a colloid simply rotates without distortion
and no force is generated. This is why the force given
by equation (19) vanishes at zero field (ξ = ∞) for all
orientations. At nonzero field (finite ξ ) the wall-induced
nematic deformation remains relatively long-ranged, but the
distribution is no longer uniform. Distortions of the nematic
distribution are stronger nearer the wall, and these in turn
induce a nonuniform deformation in the nematic coat of a
colloidal particle. We believe that these distortions drive the
force that pushes a colloidal particle towards or away from the
wall.

Above we have described a system where the colloid-
induced distribution of the surrounding nematic possesses up-
down symmetry with respect to the director, the ‘quadrupolar’
case. It is interesting to consider the so-called ‘dipolar’
situation where this symmetry is broken. In the context of
our model this can be done by simply redefining the parameter
AC in equation (3) as AC = ĀC/ cos θR , where θR is the
polar angle defining the orientation of R with respect to
the director, and ĀC is a constant. This model is chosen
for convenience because it allows the effective wall–dipole
interaction to be obtained with a simple transformation of the
quadrupole result discussed above. We emphasize that our
objective here is to determine how the wall–colloid interaction
changes qualitatively when up–down symmetry is broken, and
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for this purpose it is not necessary to specify exactly the
physical origin of the broken symmetry. Nevertheless, one can
imagine physical situations that would roughly correspond to
our model, for example a nonuniform distribution of surfactant
over the colloidal surface. In our model nematogens will
be ordered parallel to the colloidal surface at one pole and
perpendicular at the other. Such a distribution will generate
a ‘positive’ dipole in the direction of n̂, with its ‘hedgehog’
directed downward, if ĀC is positive and vice versa if ĀC is
negative.

Noting that Y21(R̂) = √
5Y11(R̂)/ cos θR , and that in the

MSA cCN is proportional to β AC, cCN
221(R)Y21(R̂)Y ∗

21(ω̂) in
expansion (8) transforms into

√
5cCN

121(R)Y11(R̂)Y ∗
21(ω̂), where

cCN
121 is just c̄CN

221(R) calculated for ĀC. Equation (16) then
transforms to give the wall–dipole result

−βφWC(s) = 2
√

5ρN〈|Y21|2〉ωY21(ŝ)Y ∗
11(ŝ)

× exp[−(s − σ/2)/ξ ]hWN
221 (s = σ/2)

BzW
c̃CN

211(k = i/ξ), (20)

where

c̃CN
121(k = i/ξ) = 4π i

∫ ∞

0
dRR2 j1(k R)c̄CN

221(R). (21)

Again using the explicit expression for our ansatz [18] and
taking into account that ξ > � 	 σ , one finds

c̃CN
121(k = i/ξ) ≈ −π

h̄CN
221(s = σ/2)

zC

× B[�3/(6ξ) + �2 + O(�)]ξ−1. (22)

The notation in equations (20) and (22) is the same as that
used above (equation (17)), except that now the contact value
h̄CN

221(σ/2) is proportional to β ĀC instead of to β AC. Thus, we
obtain

βφWC(s) = 15πρN〈|Y21|2〉ω hWN
221 (s = σ/2)h̄CN

221(s = σ/2)

zWzC

× exp[−(s − σ/2)/ξ ] sin2(θs) cos(θs)

× ξ−1[�3/(6ξ) + �2 + O(�)]. (23)

It follows from equation (23) that ‘positive dipoles’ ( ĀC > 0)
are repelled from walls with perpendicular anchoring (AW >

0) and attracted to walls with planar anchoring (AW < 0) for
positive values of cos θs . The physically significant implication
of equation (23) is illustrated in figure 2 (panel (b)) for a slab
with planar anchoring. The behavior of the colloidal particles
illustrated in the figure appears qualitatively consistent with
recently reported phenomena [12]. In a cell with planar
anchoring, where a series of electrical field envelopes induce
director tilt, colloidal particles with wall-facing hedgehogs
(‘positive’ dipoles for cos(θs) > 0) were attracted towards the
surface.

To summarize, in this paper we have developed a
molecular theory of effective, field-dependent, wall–colloid
interactions in nematic media. If the preferred nematic
orientation imposed by the wall does not coincide with the
director dictated by the external field, we have shown that new
forces appear and act over significant distances. Unlike so-
called ‘image’ interactions [15] these forces can be attractive

as well as repulsive depending on the type of anchoring at
the wall and colloidal surfaces. A clear understanding of this
effect opens possibilities for manipulating colloidal particles
in nematics. The symmetry of the colloid-induced nematic
distribution (the colloidal coat) determines the diameter
dependence of the wall–colloid interaction, and influences the
dependence on the angle θs , which describes the orientation
of the wall normal with respect to the director. In the present
analysis the orientation of the bulk director is defined by an
external field. The effective force decreases with the distance
s from the wall as e−s/ξ , where ξ is a magnetic (electric)
coherence length. For weak fields, the force is proportional to
(�/ξ)3 for ‘quadrupolar’ colloids and to (�/ξ)2 for ‘dipoles’.
We believe that nonuniformities in the nematic distribution
caused by mismatching wall and field influences drive the
wall–colloid forces identified here.
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